- 一、选择题: 1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
- (1)设 $\{x_n\}$ 是数列下列命题中不正确的是

A.若
$$\lim_{n\to\infty} x_n = a$$
,则 $\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$

B.若
$$\lim_{n\to\infty} x_{2n} = \lim_{n\to\infty} x_{2n+1} = a$$
,则 $\lim_{n\to\infty} x_n = a$

C.若
$$\lim_{n\to\infty} x_n = a$$
,则 $\lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{2n-1} = a$

D.若
$$\lim_{n\to\infty} x_{3n} = \lim_{n\to\infty} x_{3n-1} = a$$
 ,则 $\lim_{n\to\infty} x_n = a$

(2)设函数 f(x) 在 $(-\infty, +\infty)$ 内连续, 其 2 阶导函数 f''(x) 的图形如右图所示,则曲线的

$$y = f(x)$$
的拐点个数为

- A.0
- B.1
- C.2
- D.3

(3)设
$$D = \{(x,y)|x^2 + y^2 \le 2x, x^2 + y^2 \le 2y\}$$
,函数 $f(x,y)$ 在D上连续,则 $\iint_D f(x,y) dx dy = (3)$

A.
$$\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr$$

B.
$$\int_{0}^{\frac{\pi}{4}} d\theta \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$$

C.
$$2\int_0^1 dx \int_{1-\sqrt{1-x^2}}^x f(x,y)dy$$

D.
$$2\int_0^1 dx \int_x^{\sqrt{2x-x^2}} f(x,y) dy$$

(4)下列级数发散的是

A.
$$\sum_{n=1}^{\infty} \frac{n}{8^n}$$

$$B. \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{n} \right)$$

$$C. \sum_{n=2}^{\infty} \frac{\left(-1\right)^n + 1}{\ln n}$$

$$D.\sum_{n=1}^{\infty}\frac{n!}{n^n}$$

(5)设矩阵
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & a \\ 1 & 4 & a^2 \end{bmatrix}, b = \begin{bmatrix} 1 \\ a \\ a^2 \end{bmatrix}$$
,若集合 $\Omega = \{1,2\}$,则线性方程组 $Ax = b$ 有无穷多解

的充分必要条件为

A. $a \notin \Omega, d \notin \Omega$

B. $a \notin \Omega, d \in \Omega$

 $c. a \in \Omega, d \notin \Omega$

 $\text{D.}\,a\in\Omega,d\in\Omega$

(6)二次型 $f(x_1, x_2x_3)$ 在正交变换 x = py 下的标准形为 $2y_1^2 + y_2^2 - y_3^2$,其中 $P = (e_1, e_2, e_3)$,

若 $Q = (e_1, -e_3, e_2)$,则 (x_1, x_2, x_3) 在正交变换x = QY下的标准形为

A.
$$2y_1^2 - y_2^2 + y_3^2$$

B.
$$2y_1^2 + y_2^2 - y_3^2$$

$$\text{c. } 2y_1^2 - y_2^2 - y_3^2$$

D.
$$2y_1^2 + y_2^2 + y_3^2$$

(7)若 A,B 为任意两个随机事件,则

$$A. P(AB) \le P(A)P(B)$$

B.
$$P(AB) \ge P(A)P(B)$$

$$C. P(AB) \le \frac{P(A) + P(B)}{2}$$

$$D. P(AB) \ge \frac{P(A) + P(B)}{2}$$

(8) 设总体 $X \sim B(m,\theta), X_1, X_2, X_3$ 为来自该总的简单随机样本, \overline{X} 为样本均值,则

$$E = \left[\sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2 \right] =$$

A.
$$(m-1)n\theta(1-\theta)$$

B.
$$m(n-1)\theta(1-\theta)$$

$$c.(m-1)(n-1)\theta(1-\theta)$$

D.
$$mn\theta(1-\theta)$$

二、填空题(9~14 小题,每小题 4 分,共 24 分,请将答案写在答题纸指定位置上).

(9)
$$\lim_{x \to 0} \frac{\ln(\cos x)}{x^2} =$$

- (10) 设函数 f(x)连续, $\varphi(x) = \int_0^{x^2} x f(t) dt$,若 $\varphi(1) = 1$, $\varphi'(1) = 5$, 则 f(1) =______
- (11) 若函数 z = (x, y),有方程 $e^{x+2y+3z} + 2xyz = 1$ 确定,则 $dz|_{(0,0)} =$ ______
- (12)设函数 y = y(x) 是微分方程 y'' + y' 2y = 0 的解,且在 x = 0 处 y(x) 取得极值 3.则 y(x) =______
- (13)设 3 阶矩阵 A 的特征值为 2,-2.1, $B = A^2 A + E$, 其中 E 为 3 阶单位矩阵,则行列式

$$|B| =$$

- (14)设二维随机变量(X,Y)服从正态分布 N(1,0;1,1;0),则 $P\{xy-y<0\}=$
- 三、解答题: 15-23 小题, 共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
- (15) 设函数 $f(x) = x + a \ln(1+x) + bx \sin x$, $g(x) = kx^2$, 若 f(x) 与 g(x) 在 $x \to 0$ 时为等价无穷小,求 a,b,k 的值.
- (16)计算二重积分 $\iint_D x(x+y)dxdy$, 其中 $D = \{(x,y)|x^2+y^2 \le 2, y \ge x^2\}$ 。
- (17)为实现利润最大化,厂商需要对某商品确定其定价模型,设 Q 为该商品的需求量,P 为价格 MC 的边际成本, η 为需求弹性 $(\eta > 0)$ 。
- (1)证明定价模型 $P = \frac{MC}{1 \frac{1}{\eta}}$;
- (2)若该商品的成本函数 $C(Q) = 1600 + Q^2$,需求函数为 Q = 40 P,试由(1)中的定价模型确定此商品的价格。
- (18) 设函数 f(x) 在定义域 I 上的导数大于 0, 若对任意的 $x_0 \in I$,曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线与直线 $x = x_0$ 及 x 轴所围成区域的面积恒为 4,且 f(0) = 2,求 f(x) 的表达式。
- (19)(1)设函数u(x),v(x)可导,利用导数定义证明 $\left[u(x)v(x)\right]'=u'(x)v(x)+u(x)v'(x)$.

(2)设函数 $u_1(x), u_2(x), ...u_n(x)$ 可导, $f(x) = u_1(x), u_2(x), ..., u_n(x)$,写出f(x)的求导公式。

(20)设矩阵
$$A = \begin{bmatrix} a & 1 & 0 \\ 1 & a & -1 \\ 0 & 1 & a \end{bmatrix}$$
, 且 $A^3 = 0$,

- (1)求a的值,
- (2)若矩阵 x 满足 $X XA^2 AX + AXA^2 = E$,其中 E 为 3 阶单位矩阵,求 X.

(21) 设矩阵
$$A = \begin{bmatrix} 0 & 2 & -3 \\ -1 & 3 & -3 \\ 1 & -2 & a \end{bmatrix}$$
相似于矩阵 $B = \begin{bmatrix} 1 & -2 & 0 \\ 0 & b & 0 \\ 0 & 3 & 1 \end{bmatrix}$.

- (1)求a,b的值。
- (2)求可逆矩阵 P, 使 $P^{-1}AP$ 为对角矩阵。
- (22)设随机变量 x 的概率密度为 $f(x) = \begin{cases} 2^{-x} \ln 2, x > 0 \\ 0, & x \le 0 \end{cases}$, 对 X 进行独立重复的观测,直到第
- 2个大于3的观测值出现为止,记Y的观测次数。
- (1)求 Y 的概率分布;
- (2)求 EY.
- (23)设总体 X 的概率密度为 $f(x;\theta) = \begin{cases} \frac{1}{1-\theta}, \theta \le x \le 1 \\ 0, & 其他 \end{cases}$,其中 θ 为未知参数, $X_1, X_2, ...X_n$ 为

随机样本。

- (1)求 θ 的矩阵估计量;
- (2)求 θ 的最大似然估计量。