- 一、单项选择题: 1~40 小题, 每小题 2 分, 共 80 分。下列每题给出的四个选项中, 只有一个选项符合题目要求。
- 1.下列程序段的时间复杂度是

```
int sum= 0;
for (int i=1;i<n: i*=2)
    for(int j=0;j<i: j++)
    sum++;</pre>
```

A.O(log n)

B. O(n)

C. O(n log n)

D. $O(n^2)$

2.结定有限符号集 S, in 和 out 均为 S 中所有元素的任意排列。对于初始为空的栈 ST,下列叙述中,正确的是().

A.若 in 是 ST 的入栈序列,则不能判断 out 是否为其可能的出栈序列

B 若 out 是 ST 的出栈序列,则不能判断 in 是否为其可能的入栈序列

C.若 in 是 ST 的入栈序列, out 是对应 in 的出栈序列,则 in 与 out 一定不同

D.若 in 是 ST 的入栈序列, out 是对应 in 的出栈序列,则 in 与 out 可能互为倒序

3.若结点 p 与 q 在二叉树 T 的中序遍历序列中相邻,且 p 在 q 之前,则下列 p 与 q 的关系中,不可能的是().

I.q 是 p 的双亲

II.q 是 p 的右孩子

III.q 是 p 的右兄弟

IV. q 是 p 的双亲的双亲

A.仅 I

B.仅 II

C.仅 II、III

D.仅 II、IV

4.若三叉树 T 中有 244 个结点(叶结点的高度为 1),则 T 的高度至少是().

8.A

B.7

C.6

D.5

5.对任意给定的含 n(n>2)个字符的有限集 s,用二叉树表示 S 的哈夫曼编码集和定长编码集,分别得到二叉树 T_1 和 T_2 下列叙述中,正确的是().

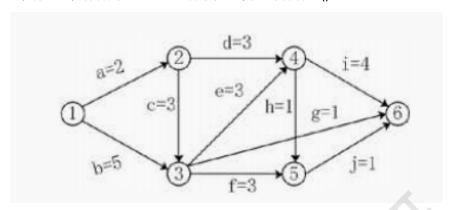
A. T_1 与 T_2 的结点数相同

 $B.T_1$ 的高度大于 T_2 的高度

C.出现频次不同的字符在 T_1 中处于不同的层

D.出现频次不同的字符在 T_2 中处于相同的层

6.对于无向图 G=(V,E),下列选项中,正确的是()。

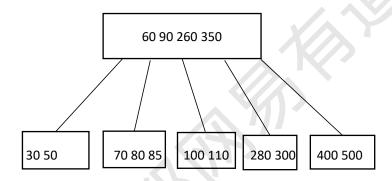

A.当|V| > |E|时,G一定是连通的

B.当|V| < |E|时,G 一定是连通的

C. |V| = |E| - 1 时,G 一定是不连通的

D.当|V| > |E| + 1时,G一定是不连通的

7.下图是一个有 10 个活动的 AOE 网,时间余量最大的活动是()。


A. C

B.g

C. h

D.j

8.在下图所示的 5 阶 B 树 T 中,删除关键字 260 之后需要进行必要的调整,得到新的 B 树 T_1 。下列选项中,不可能是 T_1 根结点中关键字序列的是()

A.60, 90, 280

B.60, 90, 350

C.60, 85, 110,350

D.60, 90, 110, 350

9.下列因素中,影响散列(哈希)方法平均查找长度的是

I.装填因子

II.散列函数

Ⅲ. 冲突解决策略

A.仅 I、II

B.仅 I、III

C.仅 II、III

D.I. II. III

10.使用二路归并排序对含 n 个元素的数组 M 进行排序时,二路归并操作的功能是()

A.将两个有序表合并为一个新的有序表

B.将 M 划分为两部分,两部分的元素个数大致相等

C.将 M 划分为 n 个部分,每个部分中仅含有一个元素

D.将 M 划分为两部分,一部分元素的值均小于另一部分元素的值

11.对数据进行排序时,若采用直接插入排序而不采用快速排序。则可能的原因是

I.大部分元素已有序

II.待排序元素数量很少

Ⅲ.要求空间复杂度为 0 (1)

IV.要求排序算法是稳定的

A.仅 I、II

B.仅 III、IV

C.仅 I、II、IV

D.I., II., III., IV

12.某计算机主频为 1GHz,程序 P 运行这程中,共执行了 10 000 条指令,其中,80% 的指令执行平均需 1 个时钟周期,10%的指令执行平均需 10 个时钟周期。程序 P 的平均 CPI 和 CPU 执行时间分别是

A.2.8,28µs

B.28,28μ s

C.2.8.28 ms.

D.28, 28ms

13.32 位补码所能表示的整数范围是()

A. -2³²~2³¹-1

B.- 2^{31} ~ 2^{31} -1

C. -2³²~2³²-1

 $D.-2^{31}\sim 2^{32}-1$

14. -0. 4375 的 I EEE754 单精度浮点数表示为()

A. BEEO 0000H

B. BF60 0000H

C. BF70 0000H

D. C0E0 0000H

15.某计算机主存地址为 24 位,采用分页虚拟存储管理方式,虚拟地址空间大小为 4GB,页大小为 4KB, 按字节编址。某进程的页表部分内容如下表所示。

19 洲红。 人人及工作工	11) (10) (11) (11) (11)	7171.0
虚页号	实页号(页框号)	存在位
82	024H	0
7		
129	180H	1
130	018H	1

当 CPU 访问虚拟地址 00082840H 时, 虚-实地址转换的结果是()

A.得到主存地址:02 4840H

B.得到主存地址 18 0840H

C.得到主存地址 01 8840H

D.检测到缺页异常

16.若计算机主存地址为 32 位,按字节编址,某 Cache 的数据区容量为 32KB, 主存块大小为 64B, 采用 8 路组相賧映射方式, 该 Cache 中 比较器的个数和位数分别为()

A.8, 20

B.8,, 23

C.64, 20

D.64, 23

17.某内存条包含 8 个 8 192X8 192X8 位的 DRAM 芯片, 按字节编址,支持突发(burst)传送 方式,对应存储器总线宽度为 64 位,每个 DRAM 芯片内有一个行缓冲区(row buffer)。下列 关于该内存条的叙述中,不正确的是()

- A.内存条的容量为 512MB
- B.采用多模块交叉编址方式
- C.芯片的地址引脚为 26 位
- D.芯片内行缓冲有 8 192X 8 位
- 18.下列选项中,属于指令集体系结构(ISA)规定的内容是()
- I.指令字格式和指令类型
- II. CPU 时钟周期
- III.通用寄存器个数和位数
- IV,加法器的进位方式
- A.仅 I、II
- B.汉 I、III
- C.仅 II、IV
- D.仅 I、III、IV
- 19.设计某指令系统时,假设采用 16 位定长指令字格式。操作码使用扩展编码方式,地址码为 6 位,包含零地址、一地址和二地址 3 种格式的指令。著二地址指令有 12 条,一地址指令有 256 条,则零地址指令的条数最多为()

A.0

B.2

C.64

D.128

- 20.将高级语言源程序转换为可执行目标文件的主要过程是()
- A.预处理→编译→汇编→链接,
- B.预处理→汇编→编译→链接
- C.预处理→编译→锇接→汇编
- D.预处理→汇编→链接→编译
- 21.下列关于中断 I/O 方式的叙述中,不正确的是()
- A.适用于键盘、针式打印机等字符型设备
- B.外设和主机之间的数据传送通过教件完成
- C.外设准备数据的时间应小于中谢处理时间
- D.外设为某进程准备数据时 CPU 可运行其他进程
- 22.下列关于并行处理技术的叙述中,不正确的是()。
- A.多核处理器属于 MIMD 结构
- B.向量处理器属于 SIMD 结构
- C.硬件多线程技术只可用于多核处理器
- D.SMP 中所有处理器共享单-物理地址空间
- 23.下列关于多道程序系统的叙述中,不正确的是()。
- A 支持进程的并发执行
- B.不必支持虚拟存储管理
- C.需要实现对共享资源的管理
- D.进程数越多 CPU 利用率越高

- 24.下列选项中,需要在操作系统进行初始化过程中创建的是()。
- A.中断向量表
- B.文件系统的根目录
- C.硬盘分区表
- D.文件系统的索引节点表
- 25.进程 P0、P1、P2 和 P3 进人就绪队列的时刻、优先级(值越小优先权越高)及 CPU 执行时间如下表所示。

进程	进入就绪列队的时刻	优先级	CPU 执行实际
PO	0ms	15	100ms
P1	10ms	20	60ms
P2	10ms	10	20ms
Р3	15ms	6	10ms

若系统采用基于优先权的抢占式进程调度算法,则从 0ms 时刻开始调度,到 4个进程都运行结束为止,发生进程调度的总次数为().

A.4

B.5

C.6

D.7

26.系统中有三个进程 P0、PI、P2 及三类资源 A、B、C.若某时刻系统分配资源的情况如下表所示,则此时系统中存在的安生序列的个数为().

进程	己	分配资源	数	ļ.	尚需资源数	数	口	丁用资源数	数
儿生	Α	В	С	Α	В	С	Α	В	С
P0	2	0	1	0	2	1			
P2	0	2	0	1	2	3	1	3	2
P2	1	0	1	0	0	3			

A.1

B.2

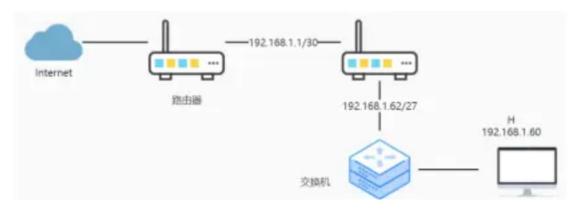
C.3

D.4

- 27.下列关于 CPU 模式的叙述中,正确的是().
- A.CPU 处于用户态时只能执行特权指令
- B.CPU 处于内核态时只能执行特权指令
- C.CPU 处于用户态时只能执行非特权指令
- D.CPU 处于内核态时只能执行非特权指令
- 28.下列事件或操作中,可能导致进程 P 由执行态变为阻塞态的是().
- I.进程 P 读文件
- Ⅱ 进程 P 的时间片用完
- Ⅲ.进程 P 申请外设
- IV 进程 P 执行信号量的 wait()操作

A.仅 I、IV

B.仅 II、III


C.仅 III、IV

D.仅 I、III、IV

29.某进程访问的页 b 不在内存中,导致产生缺页异常,该缺页异常处理过程中不一定包含

的操作是()。

- A.淘汰内存中的页
- B.建立页号与页框号的对应关系
- C.将页 b 从外存读入内存
- D.修改页表中页 b 对应的存在位
- 30.下列选项中,不会影响系统缺页率的是()。
- A.页置换算法
- B.工作集的大小
- C.讲程的数量
- D.页缓冲队列的长度
- 31.执行系统调用的过程涉及下列操作,其中由操作系统完成的是()。
- I.保存断点和程序状态字
- Ⅱ.保存通用寄存器的内容
- III.执行系统调用服务例程
- IV.将 CPU 模式改为内核态
- A.仅 I、II
- B.仅 II、II
- C.仅 II、IV
- D.仅 II、III、IV
- 32.下列关于驱动程序的叙述中,不正确的是()。
- A 驱动程序与 I/O 控制方式无关
- B.初始化设备是由驱动程序控制完成的
- C.进程在执行驱动程序时可能进入阻塞态
- D.读/写设备的操作是由驱动程序控制完成的
- 33.在 ISO/OS 参考模型中,实现两个相邻结点间流量控制功能的是()。
- A.物理层
- B.数据链路层
- C.网络层
- D.传输层
- 34.在一条带宽为 200kHz 的无噪音信道上, 若采用 4 个幅值的 ASK 调制,则该信道的最大数据传输速率是()。
- A.200kh/s
- B.400kh/s
- C.800kb/s
- D.1600kb/s
- 35.若某主机的 IP 地址是 183.80.72.48, 子网掩码是 255.255.192.0, 则该主机所在网络的网络地址是()。
- A.183.80.0.0
- B.183.80.64.0
- C.183.80.72.0
- D.183.80.192.0
- 36.下图所示网络中的主机 H 的子网掩码与默认网关分别是

A.255.255.255.192,192.168.1.1

B.255.255.255.192, 192.168.1.62

C.255.255.255.224,192.168.1.1

D.255.255.255.224,192.168.1.62

37.在 SDN 网络体系结构中, SDN 控制器向数据平面的 SDN 交换机下发流表时所使用的接口是()

A.东向接口

B.南向接口

C.西向接口

D.北向接口

38.假设主机甲和主机乙已建立一个 TCP 连接,最大段长 MSS=1KB,甲一直有数据向乙发送,当甲的拥塞窗口为 16KB 时,计时器发生了超时,则甲的拥塞窗口再次增长到 16KB 所需要的时间至少是()。

A.4 RTT

B.5 RTT

C.11 RTT

D. 16 RTT

39.假设客户 C 和服务器 S 已建立一个 TCP 连接、通信往返时间 RTT=50ms,最长报文段寿命 MSL=800ms,数据传输结束后,C 主动请求断开连接。若从 C 主动向 S 发出 FIN 段时刻算起,则 C 和 S 进入 CLOSED 状态所需的时间至少分别是()。

A.850ms, 50ms

B.1650ms, 50ms

C.850ms, 75ms

D.1650ms, 75ms

40.根设主机 H 通过 HTTP/1.1 请求浏览某 Web 服务器 S 上的 Web 页 news408 html, news408.html 引用了同目录下 1 个图像,news408.html 文件大小为 1MSS(最大段长),图像文件大小为 3 MSS,H 访问 S 的往返时间 RTT=10ms,忽略 HTTP 响应报文的首部开销和 TCP 段传输时延。若 H 已完成域名解析,则从 H 请求与 S 建立 TCP 连接时刻起,到接收到全部内容止,所需的时间至少是()。

A.30ms

B.40ms

C.50ms

D.60ms

二、综合应用题: 41~47 小题, 共 70 分。

41.03 分)已知非空二叉树 T 的结点值均为正整数,采用顺序存储方式保存,数据结构定义如下:

typedef struct { //MAX_SIZE 为已定义常量 int SqBiTNode[MAX_SIZE]; //保存二叉树节点值的数值

int ElemNum; //实际占用的数组元素个数

} SqBiTree;

T 中不存在的结点在数组 SqBiTNode 中用-1 表示。例如,对于下图所示的两棵非空二叉树 T_1 和 T_2 ,

T_1 的储存结果如下:

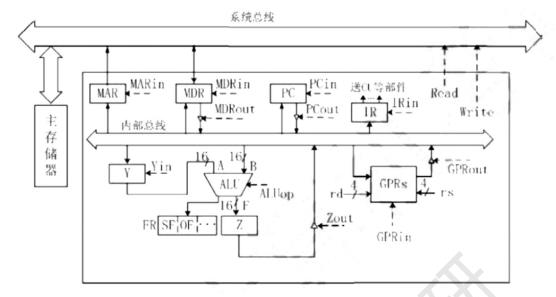
T1 SqBiTNode

40	25	60	-1	30	-1	-1	27		
----	----	----	----	----	----	----	----	--	--

T2.ElemNum=10

 T_2 的储存结果如下:

T2.SqBiTNode 40 50 60 -1 30 -1 -1 -1 35	SqBiTNode	40	50	60	-1	30	-1	-1	-1	-1	35	
---	-----------	----	----	----	----	----	----	----	----	----	----	--

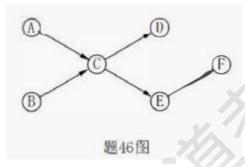

T2.ElemNum=11

请设计一个尽可能高效的算法,判定一棵采用这种方式存储的二叉树是否为二叉接索树,若是,则返回 true,否则,返回 false。要求:

- (1)给出算法的基本设计思想。
- (2)根据设计思想,采用 C 或 C++语言描述算法,关键之处给出注释。
- **42**. (10 分)现有 n(n> 100 000)个数保存在一维数组 M 中,需要在找 M 中最小的 10 个数。请回答下列问题。
- (1)设计一个完成上述查找任务的算法,要求平均情况下的比较次数尽可能少,简述其算法 思想(不要程序实现)。
- (2)说明你所设计的算法平均情况下的时间复杂度和空间复杂度。
- 43. (15 分)某 CPU 中部分数通路如题 43 图所示,其中,GPRs 为通用寄存器组: FR 为标志寄存器,用于存放 ALU 产生的标志信息:带箭头虚线表示控制信号,如控制信号 Read、Wite 分别表示主存读、主存写,MDRin 表示内部总线上数据写入 MDR,MDRout 表示 MDR 的内容送内部总线。

请回答下列问题。

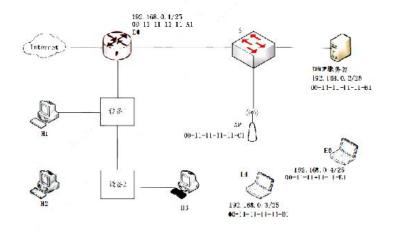
(1) ALU 的输入端 A、B 及输出端 F 的最高位分别为 A15、B15 及 F19 FR 中的符号标志和滋出标志分别为 SF 和 OF,则 SF 的逻辑表达式是什么? A 加 B、A 减 B 时 OF 的逻辑表达式分别是什么?要求逻辑表达式的输入变量为 A_{15} 、 B_{15} 及 F_{15} 。


- (2)为什么要设置暂存器 Y 和 Z?
- (3)若 GPRs 的输入端 rs、rd 分别为所读、写的通用寄存器的编号,则 GPRs 中最多有多少个通用寄存器?rs 和 rd 来自图中的哪个寄存器?已知 GPRs 内部有一个地址译码器和一个多路选择器, rd 应连接地址译码器还是多路选择器?
- (4)取指令阶段(不考虑 PC 增量操作)的控制信号序列是什么?若从发出主存读命令到主存读出数据并传送到 MDR 共需 5 个时钟周期,则取指令阶段至少需要几个时钟周期?
- (5)图中控制信号由什么部件产生?图中哪些寄存器的输出信号会连到该部件的输入端?
- 44. (8 分)假设某磁盘驱动器中有 4 个双面盘片,每个盘面有 20000 个磁道,每个磁道有 500 个扇区,每个扇区可记录 512 字节的数据,盘片转速为 7200r/m(转/分),平均寻道时间为 5ms.请回答下列问题。
- (1)每个嘲区包含数据及其地址信息,地址信息分为 3 个字段。这 3 个字段的名称各是什么?对于该磁盘,各字段至少占多少位?
- (2)一个扇区的平均访问时间约为多少?
- (3) 若采用周期挪用 DMA 方式进行磁盘与主机之间的数据传送,磁盘控制器中的数据缓冲区大小为 64 位,则在一个扇区读写过程中, DMA 控制器向 CPU 发送了多少次总线请求?若 CPU 检测到 DMA 控制器的总线请求信号时也需要访问主存,则 DMA 控制器是否可以获得总线使用权?为什么?
- 45. (7 分)某文件系统的磁盘大小为 4KB,目录项由文件名和索引节点号构成,每个索引节点占 256 字节,其中包含直接地址项 10 个,一级、二级和三级间接地址项各 1 个,每个地址项占 4 字节。该文件系统中子目录 stu 的结构如题 45(a)图所示,stu 包含子目录 course 和文件 doc.course 子目录包含文件 coursel 和 course2。各文件的文件名、索引节点号、占用磁盘块的块号如题 45 (b)图所示。

0	stu
	course
	coursel
	course2
	doc

文件名	索引节点号	磁盘块号
stu	1	10
course	2	20
Course1	10	30
Course2	100	40
dox	10	Х

请回答下列问题。


- (1)目录文件 stu 中每个目录项的内容是什么?
- (2)文件 doc 占用的磁盘块的块号 X 的值是多少?
- (3)若目录文件 course 的内容已在内存,则打开文件 couse 并将其读入内存,需要读几个磁盘块?说明理由。
- (4) 若文件 eoune2 的大小增长到 6MB,则为了存取 couroe2 需要使用该文件索引节点的哪儿级间接地址项?说明理由。
- 46. (8 分)某进程的两个线程 T1 和 T2 并发执行 A、B、C、D、E 和 F 共 6 个操作,其中 T1 执 行 A、E 和 F,T2 执行 B、C 和 D.题 46 图表示上述 6 个操作的执行顺序所必须满足的约束: C 在 A 和 B 完成后执行,D 和 E 在 C 完成后执行,F 在 E 完成后执行。请使用信号量的 wait()、signal()操作描述 T1 和 T2 之间的同步关系,并说明所用信号量的作用及其初值。

47. (9分)某网络拓扑如题 47图所示, R为路由器, S为以太网交换机, AP是 802.11接入点,路由器的 EO 接口和 DHCP 服务器的 IP 地址配置如图中所示; H1与 H2属于同一个广播域,但不属于同一个冲突域; H2和 H3属于同一个冲突域; H4和 H5已经接入网络,并通过 DHCP动态获取了 IP地址。现有路由器、100BaseT以太网交换机和 100BaseT集线器(Hib)三类设备各若干台。

请回答下列问题。

- (1)设备 1 和设备 2 应该分别选择哪类设备?
- (2)若信号传播速度为 2×10⁸m/s,以太网最小帧长为 64B。信号通过设备 2 时会产生额外的 1.51μs 的时间延迟,则 H2 与 H3 之,间可以相距的最远距离是多少?
- (3)在 H4 通 DHCP 动态获取 IP 地址过程中,H4 首先发送了 DHCP 报文 M, M 是哪种 DHCP 报文?路由器 E0 接口能否收到封装 M 的以太网帧?S 向 DHCP 服务器转发的封装 M 的以太网帧的目的 MAC 地址是什么?
- (4)若 H4 向 H5 发送一个 IP 分组 P,则 H5 收到的封装 P 的 802.11 帧的地址 1、地址 2 和地址 3 分别是什么?

